Expressed Glycosylphosphatidylinositol-Anchored Horseradish Peroxidase Identifies Co-Clustering Molecules in Individual Lipid Raft Domains

نویسندگان

  • Arisa Miyagawa-Yamaguchi
  • Norihiro Kotani
  • Koichi Honke
چکیده

Lipid rafts that are enriched in glycosylphosphatidylinositol (GPI)-anchored proteins serve as a platform for important biological events. To elucidate the molecular mechanisms of these events, identification of co-clustering molecules in individual raft domains is required. Here we describe an approach to this issue using the recently developed method termed enzyme-mediated activation of radical source (EMARS), by which molecules in the vicinity within 300 nm from horseradish peroxidase (HRP) set on the probed molecule are labeled. GPI-anchored HRP fusion proteins (HRP-GPIs), in which the GPI attachment signals derived from human decay accelerating factor and Thy-1 were separately connected to the C-terminus of HRP, were expressed in HeLa S3 cells, and the EMARS reaction was catalyzed by these expressed HRP-GPIs under a living condition. As a result, these different HRP-GPIs had differences in glycosylation and localization and formed distinct clusters. This novel approach distinguished molecular clusters associated with individual GPI-anchored proteins, suggesting that it can identify co-clustering molecules in individual raft domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cholesterol-dependent retention of GPI-anchored proteins in endosomes.

Several cell surface eukaryotic proteins have a glycosylphosphatidylinositol (GPI) modification at the Cterminal end that serves as their sole means of membrane anchoring. Using fluorescently labeled ligands and digital fluorescence microscopy, we show that contrary to the potocytosis model, GPI-anchored proteins are internalized into endosomes that contain markers for both receptor-mediated up...

متن کامل

Dynamics of GPI-anchored proteins on the surface of living cells.

Rather than being distributed homogeneously on the cell surface, proteins are probably aggregated in clusters or in specific domains. Some of these domains (lipid rafts) have lipid compositions, which differ from their surrounding membrane. They have been implicated in cell signaling, cell adhesion, and cholesterol homeostasis. Estimates of their size vary from 40 to 350 nm in diameter dependin...

متن کامل

Partitioning of Thy-1, GM1, and cross-linked phospholipid analogs into lipid rafts reconstituted in supported model membrane monolayers.

As shown earlier, raft-like domains resembling those thought to be present in natural cell membranes can be formed in supported planar lipid monolayers. These liquid-ordered domains coexist with a liquid-disordered phase and form in monolayers prepared both from synthetic lipid mixtures and lipid extracts of the brush border membrane of mouse kidney cells. The domains are detergent-resistant an...

متن کامل

Probing lipid rafts with proximity imaging: actions of proatherogenic stimuli.

Glycosylphosphatidylinositol (GPI)-anchored proteins have been shown to cluster in microdomains enriched in glycosphingolipids and cholesterol and represent a relatively selective marker of lipid rafts. In recent years, several attempts have been made to use fluorescent probes to nondisruptively label these domains in living cells. Here, we have transfected endothelial cells with a GPI-anchored...

متن کامل

The membrane domains occupied by glycosylphosphatidylinositol-anchored prion protein and Thy-1 differ in lipid composition.

Glycosylphosphatidylinositol-anchored prion protein and Thy-1, found in adjacent microdomains or "rafts" on the neuronal surface, traffic very differently and show distinctive differences in their resistance to detergent solubilization. Monovalent immunogold labeling showed that the two proteins were largely clustered in separate domains on the neuronal surface: 86% of prion protein was cluster...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014